並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 297件

新着順 人気順

超伝導の検索結果1 - 40 件 / 297件

  • LK-99は本当に常温常圧超伝導を達成しているのか - 理系のための備忘録

    先月末、「常温常圧で超伝導を示す物質が作成できた」というニュースが飛び込んできた。合成の成功を主張しているのは韓国の高麗大学の研究チームである。超伝導転移温度は歴代最高温度を大幅に塗り替える127℃と報告されており、これが常圧(大気圧)下で超伝導性を発現するとのことである。現在様々な追試が世界中で進められており、ネット世界をリアルタイムで大いに騒がせている。 本稿では、現時点におけるこの周辺の状況について情報を整理したい。 プロローグ:Lu-HN系の超伝導性? 時はやや遡り、今年の3月。アメリカ合衆国ロチェスター大学の教授であるランガ・P・ディアス(Ranga P. Dias)の研究グループは、294 K(≈ 20.85℃)、1万気圧(≈ 1 GPa; 1ギガパスカル)の条件で含窒素ルテチウムハライド結晶(Lu-HN系)が超伝導性を示すと主張する成果をNature誌において報告した[1]。

    • 常温常圧超伝導体「LK-99」の再現に中国の研究機関が成功と報告!夢の物質がついに実現か? | TEXAL

      先日、韓国の研究者らが発表した、夢の常温常圧超伝導体の再現に成功したとの報告は、過去に類似の報告が数多くもたらされてはきたものの、再現性がなく、実際に超伝導状態が確認出来なかったことから、少しの期待と多くの懐疑のまなざしと共に迎えられた。だが、もしかしたら我々は、歴史の瞬間に立ち会っている可能性もある。 「LK-99」と名付けられたこの化合物は、研究者らによると常温・常圧の状態で超伝導の特性を示す「常温常圧超伝導体」であるとして、先週プレプリントサーバーarXivに発表された。科学会ではこの報告の正当性を確かめるために、研究が進められているが、2つの研究機関から予備的な試験の結果として、実際に発見者らが主張したような超伝導特性を示す特徴が認められたとの報告がもたらされているのだ。 超伝導体とは、平たく言えば電気を損失なく伝導させることができる化合物の事を指す。従来の超伝導体は、氷点下を遙か

        常温常圧超伝導体「LK-99」の再現に中国の研究機関が成功と報告!夢の物質がついに実現か? | TEXAL
      • 第4の超伝導状態「フェルミ面を持つ超伝導」の発見|記者発表|お知らせ|東京大学大学院新領域創成科学研究科

        東京大学 発表のポイント ◆鉄系超伝導体FeSe1-xSxの一部において、今まで知られていた超伝導では説明できない、超伝導電子の数が金属状態の電子数を大幅に下回る性質を持つことを発見しました。 ◆金属の特徴は「フェルミ面」を持つことですが、超伝導状態では、このフェルミ面(2次元面)が消失する、面が点となる、面が線となる、の3種類が今まで知られていました。今回発見した超伝導はこのいずれにも当てはまらないものです。 ◆これは、理論的に示唆されていた、新しい第4の超伝導状態「フェルミ面を持つ超伝導」が実現していることを示しており、超伝導の新たな可能性をひらくものです。 「フェルミ面を持つ超伝導」のイメージ図 発表概要 東京大学大学院新領域創成科学研究科の松浦康平大学院生(研究当時/現在:同大学大学院工学系研究科助教)、六本木雅生大学院生、橋本顕一郎准教授、芝内孝禎教授らの研究グループは、コロンビ

          第4の超伝導状態「フェルミ面を持つ超伝導」の発見|記者発表|お知らせ|東京大学大学院新領域創成科学研究科
        • なぜ 酒で煮ると超伝導物質に変わるのか? | NIMS

          独立行政法人物質・材料研究機構 慶應義塾大学先端生命科学研究所 NIMSは以前、鉄系超伝導関連物質の鉄テルル化合物を酒中で煮ると超伝導体に変わることを発見したが、今回、慶應義塾大学 先端生命科学研究所との共同研究により、酒中に含まれる超伝導誘発物質を同定し、その誘発メカニズムを明らかにした。 独立行政法人 物質・材料研究機構 (理事長 : 潮田 資勝、茨城県つくば市、以下NIMS) は、鉄系超伝導関連物質である鉄テルル化合物〔Fe(Te,S)系〕を酒中で煮ると超伝導体に変わることを発見した (平成22年7月27日 NIMS - 独立行政法人科学技術振興機構 (以下JST) 共同プレス発表) 。今回、慶應義塾大学 先端生命科学研究所 (所長 : 冨田 勝、山形県鶴岡市、以下慶應大先端研) との共同研究により、酒中に含まれる超伝導誘発物質を同定し、その誘発メカニズムを明らかにした。 慶應大先端

            なぜ 酒で煮ると超伝導物質に変わるのか? | NIMS
          • 100年以上も低温下の現象とされた「超伝導」を室温で発生させることに成功

            By Argonne National Laboratory 「超伝導」とは特定の金属や化合物を冷却した際、その物質の電気抵抗がゼロになるという現象です。超伝導が発見された1911年以来、超伝導は「低温下で発生するもの」とされ、最高でも摂氏マイナス23度の環境下で発生していました。しかし、アメリカ・ロチェスター大学の研究チームにより、超伝導が室温でも発生することが明らかになりました。 Room-temperature superconductivity in a carbonaceous sulfur hydride | Nature https://www.nature.com/articles/s41586-020-2801-z For The First Time, Physicists Have Achieved Superconductivity at Room Temperat

              100年以上も低温下の現象とされた「超伝導」を室温で発生させることに成功
            • 硫化水素、セ氏零下70度で超伝導に 最高記録を更新:朝日新聞デジタル

              硫化水素に超高圧をかけるとセ氏零下70度で電気抵抗がゼロの超伝導状態になることをドイツの研究チームが発見し、大阪大学などと共同で、この状態にある硫化水素の結晶構造を突き止めた。 ドライアイス(零下約80度)で冷やせる温度で、従来、超伝導が起きる温度の最高記録だった零下約110度を約20年ぶりに大幅に更新したことになる。超伝導はMRI(磁気共鳴断層撮影)やリニアモーターカーに使われる強力な電磁石などに役立つ。今回の発見は超高圧が必要ですぐに実用化はできないが、高温超伝導の研究を大きく進める成果だ。 硫化水素は硫黄と水素の化合物。温泉などに含まれ、低濃度のガスだと腐った卵のような臭いがするが超高圧をかけると金属の状態になる。ドイツのマックスプランク研究所などが今年8月、約150万気圧をかけると零下70度で超伝導状態になったと、英科学誌ネイチャーに報告した。 一方、阪大基礎工学研究科の清… この

                硫化水素、セ氏零下70度で超伝導に 最高記録を更新:朝日新聞デジタル
              • 幻の常温常圧超伝導ニュースを超えた! 京大チームが超伝導体で「ノーベル賞級」の大発見か

                LK-99は「エネルギー問題の解決の糸口になる」と期待されたが…(写真はイメージです) Rokas Tenys-Shutterstock <韓国チームの開発したLK-99について、科学界は「常温常圧超伝導体は幻だった」と結論づけている。そんななか、67年前に予言され、理論上だけの存在だった「パインズの悪魔」を京大教授らが観測。ノーベル賞級の研究成果が発表された> 韓国チームが世界初の常温常圧超伝導体(超伝導物質)と主張する「LK-99」は、7月末に発表されて以来、「世紀の大発見か?」と世界中を巻き込む大論争になりました。 「本当だったらノーベル賞級」「エネルギー問題の解決の糸口になる」とされ、超伝導体関連の株式市場まで動きましたが、世界で最も権威がある科学学術誌の一つである「Nature」は16日、オンライン版で「韓国の研究チームが開発したLK-99は常温常圧超伝導体ではない」と報じました

                  幻の常温常圧超伝導ニュースを超えた! 京大チームが超伝導体で「ノーベル賞級」の大発見か
                • 常温常圧超伝導体だという「LK-99」に科学誌Natureが懐疑的な見解を示す

                  2023年7月、韓国・高麗大学量子エネルギー研究センターの研究チームが発表した「常温・常圧で超伝導を実現する物質」についての論文は大きなセンセーションを巻き起こしました。しかし、各所で行われている再現実験はなかなかうまくいかず、科学ライターのダン・ガリスト氏は科学誌Natureで、「研究者らは懐疑的に見ている」と述べています。 Claimed superconductor LK-99 is an online sensation — but replication efforts fall short https://doi.org/10.1038/d41586-023-02481-0 量子エネルギー研究センターの発表は「常温常圧超伝導」でしたが、記事作成時点で同様に常温常圧での超伝導を再現できたグループはなく、たとえば中国・東南大学の研究チームは110K(およそマイナス163度)での超伝

                    常温常圧超伝導体だという「LK-99」に科学誌Natureが懐疑的な見解を示す
                  • ノーベル賞間違いなし、日本発「準結晶超伝導転移」 名古屋大学、豊田工業大学、東北大学、豊田理化学研究所などが達成した大業績 | JBpress (ジェイビープレス)

                    「Discovery of Superconductivity in Quasicrystal」。日本語なら「準結晶中での超伝導状態の発見」とでも訳しましょうか。 名古屋大学、豊田工業大学、東北大学、豊田理化学研究所などのグループが達成した、人類史的な価値をもつ大業績と思います、 一定の確率でノーベル賞が出て不思議ではない驚くべき成果ですが、ことさらに大メディアが騒ぎ立てたりすることはありませんでした。 まあ、記事の編集担当デスクが理解できなければ仕方のない、いつものことですが、今回はこの「準結晶の超伝導」の何が凄いのか、簡単に解説してみたいと思います。 準結晶とは何か? まず最初に「準結晶(Quasicrystal)」とは何か、から話を始めなければなりません。ワープロに「じゅんけっしょう」と入力すると「準決勝」と変換される程度に、世間にはほとんど知られていない物質の形態と思います。 原子

                      ノーベル賞間違いなし、日本発「準結晶超伝導転移」 名古屋大学、豊田工業大学、東北大学、豊田理化学研究所などが達成した大業績 | JBpress (ジェイビープレス)
                    • 宇宙は「量子流体」――村山斉氏が語る、超伝導体としての宇宙 | WIRED VISION

                      前の記事 ミツバチは「人間の顔」を認識できる 宇宙は「量子流体」――村山斉氏が語る、超伝導体としての宇宙 2010年2月 2日 Chris Lee 宇宙の構造。Millennium Simulation, 画像はwikipedia 村山斉氏について、筆者がまず驚いたのは、人前で発表を行なう一般的な日本人のイメージと違っていたことだ。村山氏は、リラックスしていて雄弁で、そして見るからに、自身の研究に心底わくわくしていた。 日本に新設された研究機関、数物連携宇宙研究機構(IPMU)の機構長に就任した村山氏は、ほとんど何を研究しても許される立場にある。しかし、村山氏は「すべて」を研究することを選んだ。村山氏が解明しようとしているのは、なぜ宇宙が存在するのか、という問題だ。 オランダの研究財団Foundation for Fundamental Research on Matter(FOM)が主催

                      • グラフェン2層間の角度をずらすことで超伝導性と絶縁性の両方を生み出すことに成功

                        炭素原子のみで構成され単相で平面に広がる「グラフェン」は、超伝導性を持たせられる素材として期待されるなど、さまざまな分野での応用が期待されています。MITとハーバード大学の研究者が、炭素1個分の厚みのグラフェンシートを重ねて、角度をわずかにずらすことで、超伝導体や絶縁体に変えられることを発見しました。 Unconventional superconductivity in magic-angle graphene superlattices | Nature https://www.nature.com/articles/nature26160 Insulator or superconductor? Physicists find graphene is both | MIT News http://news.mit.edu/2018/graphene-insulator-superco

                          グラフェン2層間の角度をずらすことで超伝導性と絶縁性の両方を生み出すことに成功
                        • 田渕 豊 (超伝導量子計算システム工学) - 講演録-23Aug

                          特別感謝→ 文字起こし:Notta.ai @大阪/23年8月講演 カッコ内は、講演中に突発的に喋って分かりにくくなったものをカッコで括ったり、意味を後で補ったものです。 皆さんこんにちは。理化学研究所の量子コンピュータ研究センターにいる田渕と申します。今日よろしくお願いいたします。ちょっとですねどんな話をしようかなって迷ったんですけれど、量子コンピュータはとりあえず面白いよと。面白いっていうのさえ伝われば、今日は成功だと思いましょう。 はいちょっと私の自己紹介から始めます。私出身が岡山県でして岡山県の倉敷市というところで、石油化学コンビナート中で生まれています。そこでは石油化学であったりと製鉄があったりと、すごい工業の盛んな町です。私は興味持ったのはああいうコンピュータですね。デジタルコンピュータで小さい頃から昔の古いハチハチを与えてもらって、10年もの前のコンピュータを与えられた私はこれ

                            田渕 豊 (超伝導量子計算システム工学) - 講演録-23Aug
                          • 超伝導体内部から質量も電荷もなく光と相互作用もしない「悪魔粒子」を発見! - ナゾロジー

                            悪魔の名にふさわしい不思議な粒子です。 日本の京都大学などで行われた研究によって、超伝導体において「悪魔」の名を持つ粒子が発見されました。 この悪魔粒子は複数の電子によって構成されていながら電荷も質量ももたず、光と相互作用することもありません。 そのため1959年にデヴィッド・パインズによって金属中に存在すると予測されていたものの、実際に観測されたことはありませんでした。 しかし京都大学らの研究者たちが電子を使った新しい測定方法を実施したところ、超伝導体であるストロンチウム・ルテニウム酸化物(Sr2RuO4)の内部に、質量を持たない電子たちによって構成される奇妙な粒子を発見。 徹底的な分析の末に「悪魔粒子」であることが判明しました。 悪魔粒子の発見は超伝導性にどのような影響を与えるのでしょうか? 研究内容の詳細は2023年8月9日に『Nature』にて掲載されました。

                              超伝導体内部から質量も電荷もなく光と相互作用もしない「悪魔粒子」を発見! - ナゾロジー
                            • 日本が開発中の超伝導用磁石で10万Aの超大電流を達成、核融合炉実現に一歩近づく

                              By Paulina Clemente 世界の核融合炉研究をリードする核融合科学研究所が、最先端の高温超伝導導体の製作に成功し、従来の記録を大幅に上回る10万アンペアという超大電流を達成しました。この類を見ない大きさの電流を生み出す、核融合科学研究所・東北大学共同開発の磁性体材料によって、夢の発電所である「核融合炉」の実現に大きく近づくと期待されています。 プレスリリース / 自然科学研究機構 核融合科学研究所 http://www.nifs.ac.jp/press/140331.html 火力発電所のように二酸化炭素を排出せず、原子力発電所のような制御不能の連鎖反応が原理的に起こらないため比較的安全で、かつ、一度のサイクルで地球全体のエネルギーを賄えるほどの巨大なエネルギーを生み出すことのできる「核融合炉」は、21世紀のエネルギー問題を解消できる技術として一刻も早い実用化が望まれています

                                日本が開発中の超伝導用磁石で10万Aの超大電流を達成、核融合炉実現に一歩近づく
                              • 超伝導をこれまでよりもはるかに高温の環境で発生させることに成功

                                金属や化合物を非常に低い温度に冷却したときに電気抵抗がゼロになる「超伝導」は、送電時に損失が生じないなどさまざまなメリットがあるため、実用化が期待される夢の技術です。しかし、極低温状態でしか発生しないため、超伝導をより高温で発生させることは、実用化に向けて避けては通れない道というわけで、世界中で高温超伝導物質の研究が進められています。そんな中、ドイツの研究グループが、203K(マイナス70度)という高温な環境で、高温超伝導体につきものの物質をまったく含まない状態で超伝導を発生させることに成功しています。 Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system : Nature : Nature Publishing Group http://www.nature.

                                  超伝導をこれまでよりもはるかに高温の環境で発生させることに成功
                                • 物質本来の強い超伝導を発現させる新奇プロセスの構築

                                  5,330千円 (直接経費: 4,100千円、間接経費: 1,230千円) 2013年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円) 2012年度: 1,820千円 (直接経費: 1,400千円、間接経費: 420千円) 2011年度: 2,210千円 (直接経費: 1,700千円、間接経費: 510千円)

                                  • 【お詫びあり】超伝導を使って反重力レーシングゲーム「ワイプアウト」を再現(動画) - 涙目で仕事しないSE

                                    JIST(JAPAN INSTITUTE OF SCIENCE AND TECHNOLOGY)と言うチームによる、反重力レーシングゲーム「ワイプアウト」を再現した動画です。超伝導の「ピン止め効果」研究の一環として、作成されました。このレーストラックを作成した研究チームは、近い将来、実物大のワイプアウトレースが可能になるだろうと予想しています。 Controlled Quantum Levitation on a Wipe'Out Track - YouTube https://www.youtube.com/watch?v=Zqmdv5iyIOY レーシングカーから吐き出される白い冷気がレースの雰囲気をさらに盛り上げています。今は液体窒素を使っていますが、超伝導がもう少し高い温度で発生させられるようになれば、子どものオモチャくらいのレベルなら、すぐに作れそうですよ。 リニアモーターカーくら

                                      【お詫びあり】超伝導を使って反重力レーシングゲーム「ワイプアウト」を再現(動画) - 涙目で仕事しないSE
                                    • 酒で超伝導を起こした話 : 有機化学美術館・分館

                                      7月28 酒で超伝導を起こした話 さて今回は「有機化学」という筆者の守備範囲から外れますが、あまりにも面白い話題があったのでそちらで一本書いてみます。 今回の主役・赤ワイン 超伝導と呼ばれる現象があります。絶対零度近くの超低温で電気抵抗が全くのゼロになってしまう現象で、1911年にカメリン・オンネスによって発見されました。 その75年後、突如として世界を揺るがす発見がありました。スイスのIBMチューリッヒ研究所にて、ランタン・バリウム・銅の酸化物がかなりの高温で超伝導を示すことが発見されたのです。やがて組成を変えることによって転移温度(超伝導を起こす温度)はさらに高まることがわかり、世界中の物理学者に大フィーバーを巻き起こすことになりました。この功績により、発見者のミューラーとベドノルツは1986年のノーベル物理学賞を受賞しています。発表から受賞までわずか半年というのは空前の記録であり、今

                                        酒で超伝導を起こした話 : 有機化学美術館・分館
                                      • ロチェスター大学の“室温超伝導”達成の報告に早速反論「結果が全く再現できなかった」 | TEXAL

                                        先日、“室温”かつ実用的な“室圧付近”で超伝導の特性を示した物質の生成に成功した事が、ロチェスター大学の研究者らによって報告されたが、早速この研究に対して疑問が呈されている。 北京分子科学国家実験室、米国イリノイ大学アーバナ・シャンペーン校、シカゴ大学等の研究者らは、木曜日にプレプリントサーバーarXivに投稿した論文の中で、ロチェスター大学が発見した室温超伝導体に関する中国が主導した追試では、摂氏-203度(華氏-333度)でしか、超伝導が達成できなかったと報告している。更に、その状態に到達するためには、研究チームが報告していた圧力よりも遥かに強力な、218ギガパスカルの圧力が必要であった事も合わせて述べている。これは、ロチェスター大学の研究チームが、21℃、1ギガパスカルという実用に適した圧力と温度で超伝導体の結晶を作ることができたと報告された翌日に発表されたものだ。 「Nature誌

                                          ロチェスター大学の“室温超伝導”達成の報告に早速反論「結果が全く再現できなかった」 | TEXAL
                                        • 「LK-99」は本当に常温常圧超伝導を実現しているのか?検証研究報告のまとめ - ナゾロジー

                                          計算では上手くいくはずなのに、実験では失敗しています。 韓国の量子エネルギー研究センター(Q-Centre)で行われた研究によって、人類史上初となる常温常圧超伝導の物質「LK-99」の作成に成功したとの報告が行われました。 研究結果が本当ならば、ロスのない送電システムをはじめ、SFのような技術が実現するでしょう。 しかし研究結果の検証が進むにつれて、シミュレーションでは超伝導性の可能性を示すものの、実際にLK‐99を作ってみた実験では超伝導性の再現が不十分という傾向が明らかになってきました。 いったいなぜ計算結果と実験結果が異なるのでしょうか? 今回はLK-99にかかわる複数の研究結果をまとめ、常温常圧超伝導の真偽に迫りたいと思います。 研究内容の詳細は2023年7月23日に『arXiv』にて、1本目と2本目の論文が公開されました。 Korean team claims to have c

                                            「LK-99」は本当に常温常圧超伝導を実現しているのか?検証研究報告のまとめ - ナゾロジー
                                          • [特別寄稿]世界のエネルギーインフラを変革する、超伝導直流送電 - WirelessWire News(ワイヤレスワイヤーニュース)

                                            現代文明は電気という便利なエネルギーに依存している。だが、電気は長距離の送電損失が大きく溜められないという欠点がある。中部大学 超伝導・持続可能エネルギー研究センターの山口作太郎教授らが進めている「超伝導直流送電」が、こうした事情を変えるかもしれない。超伝導直流送電技術で地球規模の電力網を構築すれば、エネルギーを安定供給できる可能性があるというのだ。現在、中部大学では200m級の超伝導直流送電プロトタイプを建設し、実用化に向けた研究を行っている。 どうしてこれまでの送電は、交流だったのか? ▼中部大学の200m級超伝導直流送電プロトタイプ。手前にある2つのタンク上の容器は、電源などをつなぐための端末容器。画面奥にあるタンクは液体窒素の冷却循環装置だ。 火力発電所や原子力発電所、水力発電所で作られる電気は交流で、日本国内では基本的に交流で送電されています(*)。さまざまな研究機関や企業で研

                                            • お酒が誘発する鉄系超伝導 | NIMS

                                              独立行政法人物質・材料研究機構 独立行政法人科学技術振興機構 NIMS超伝導材料センターの高野 義彦グループリーダーらは、鉄系超伝導関連物質であるFe(Te,S)系に超伝導を発現させる際、赤ワインやビールなどのお酒が有効であることを発見した。 独立行政法人 物質・材料研究機構 (理事長 : 潮田 資勝、以下NIMS) は、鉄系超伝導1)関連物質であるFe(Te,S)系に超伝導を発現させる際、赤ワインやビールなどのお酒が有効であることを発見した。この成果は、NIMS超伝導材料センター (センター長 : 熊倉 浩明) ナノフロンティア材料グループの高野 義彦グループリーダーらの研究によって得られた。 2008 年に、東京工業大学の神原 陽一博士 (現在、慶應義塾大学理工学部専任講師) らによって、鉄系超伝導体LaFeAs(O,F)が発見された。この発見を契機に、FeAs、FeP、FeSeをベー

                                                お酒が誘発する鉄系超伝導 | NIMS
                                              • 「常温常圧の超伝導体」として科学界に旋風を巻き起こしたLK-99が超伝導体ではないことはどのように明らかになったのか?

                                                韓国の研究チームが発表した「室温かつ常圧で超伝導状態になる物質・LK-99」については、発表当初から世界中の研究者から注目が集まり、複数の研究機関が再現実験を実施しました。最終的に、LK-99は超伝導体ではないことが明らかになっているのですが、そのプロセスを科学誌のNatureが解説しています。 LK-99 isn’t a superconductor — how science sleuths solved the mystery https://www.nature.com/articles/d41586-023-02585-7 事の発端となったのは、韓国・ソウルのスタートアップであるQuantum Energy Research Centreで働く研究者グループが発表した、「LK-99は少なくとも127度までの温度で超伝導体である」とする研究論文にあります。これまで超伝導体を生み出す

                                                  「常温常圧の超伝導体」として科学界に旋風を巻き起こしたLK-99が超伝導体ではないことはどのように明らかになったのか?
                                                • 「室温で超伝導」目前 零下23度で実現、かぎは超高圧:朝日新聞デジタル

                                                  ","naka5":"<!-- BFF501 PC記事下(中⑤企画)パーツ=1541 -->","naka6":"<!-- BFF486 PC記事下(中⑥デジ編)パーツ=8826 --><!-- /news/esi/ichikiji/c6/default.htm -->","naka6Sp":"<!-- BFF3053 SP記事下(中⑥デジ編)パーツ=8826 -->","adcreative72":"<!-- BFF920 広告枠)ADCREATIVE-72 こんな特集も -->\n<!-- Ad BGN -->\n<!-- dfptag PC誘導枠5行 ★ここから -->\n<div class=\"p_infeed_list_wrapper\" id=\"p_infeed_list1\">\n <div class=\"p_infeed_list\">\n <div class=\"

                                                    「室温で超伝導」目前 零下23度で実現、かぎは超高圧:朝日新聞デジタル
                                                  • 超伝導量子コンピュータ向けの極低温環境での量子誤り訂正手法を開発~大規模量子コンピュータ開発の鍵となる技術を世界で初めて実現~ | ニュースリリース | NTT

                                                    日本電信電話株式会社(本社:東京都千代田区、代表取締役社長:澤田 純、以下「NTT」)と国立大学法人東海国立大学機構 名古屋大学(総長:松尾 清一、所在地:愛知県名古屋市千種区、以下「名古屋大学」)と国立大学法人東京大学(以下「東京大学」)は、超伝導量子コンピュータが駆動する極低温環境で、実用的な規模の量子コンピュータを制御するのに必要な水準の消費電力、実装規模、速度、誤り訂正の性能などを満たす量子誤り訂正の手法を世界で初めて開発しました。 1.背景・経緯 量子コンピュータは、量子力学の重ね合わせの原理を活用して計算を行う技術で、素因数分解や量子化学計算などの問題を高速に解けることが期待されているため、その開発が世界で盛んに進められています。 古典コンピュータを構成する素子である(古典)ビットは0または1の値をとります。一方、量子コンピュータを構成する素子である量子ビット(※1)は0と1に

                                                      超伝導量子コンピュータ向けの極低温環境での量子誤り訂正手法を開発~大規模量子コンピュータ開発の鍵となる技術を世界で初めて実現~ | ニュースリリース | NTT
                                                    • "室温超伝導" は幻?Nature掲載論文が編集者権限で撤回|彩恵りり

                                                      この記事を読む前に今回のお話は史上初の室温超伝導の達成を主張した論文にまつわる撤回騒動を解説した記事だよ。このお話は、単なる研究の誤りだけでなく、場合によっては捏造かもしれないと、科学世界の闇に関わる話だから、私の普段の解説内容と比較すると、まったくワクワクもしない楽しくもない内容が約1万文字も続くので、そこは注意して読んでほしいんだよ。逆にこういう話に少しでも興味がある人にとっては知ってほしいお話だから、ちょっとまとめてみたという次第だよ。 このような話、前回は楽しくないので有料記事として内容を一部しか公開しなかった、というのをやったけど、今回は全部を無料公開としたよ。この記事を書いているのは10月2日の深夜。3日の夕方にはノーベル賞の発表が始まって、その解説記事にかかりっきりになるから、この記事を速く書き上げてしまいたいという気持ちが優先しているから、内容はだいぶ書き散らしっぱなし、読

                                                        "室温超伝導" は幻?Nature掲載論文が編集者権限で撤回|彩恵りり
                                                      • 常温常圧超伝導体「LK-99」再現実験について東南大学のチームがマイナス163度で「抵抗ゼロ」を観測したと発表

                                                        2023年7月に韓国の研究チームが常温かつ常圧で超伝導状態になる物質「LK-99」に関する未査読論文を公開しました。LK-99が本当に超伝導体なのかを明らかにするべく世界中の研究機関が再現実験に取り組んでおり、2023年8月3日には中国・東南大学の研究チームが「LK-99が110K(約マイナス163度)で抵抗ゼロになることを確認した」とする未査読論文を発表しました。 Observation of zero resistance above 100° K in Pb10−xCux(PO4)6O https://doi.org/10.48550/arXiv.2308.01192 LK99,110K零电阻观测成功_哔哩哔哩_bilibili https://www.bilibili.com/video/BV1pM4y1p7u5/ 電気の抵抗がゼロになる超伝導体はリニアモーターカーや量子コンピュー

                                                          常温常圧超伝導体「LK-99」再現実験について東南大学のチームがマイナス163度で「抵抗ゼロ」を観測したと発表
                                                        • 電気抵抗のない超伝導技術で「2年間永久電流を流すこと」に日本が初成功 - ナゾロジー

                                                          非常に低い温度まで冷やしたとき、物質は電気抵抗がゼロになる超電導現象を起こします。 このとき回路を閉じることができれば、そこには外部からの電流供給なしで永遠に電気が流れ続ける「永久電流」を作り出すこともできるのです。 もちろん理屈としては可能そうでも、実際はスイッチなどの接合部分まで超電導状態を維持しなければならないため、実現は非常に困難な技術です。 しかし、理化学研究所などの研究チームは2018年にこれを実現し、さらにそれから約2年間永久電流を安定的に維持し続けることに世界で初めて成功したと報告しています。 これまで数日間の永久電流保持の報告はありましたが、年単位でこれを実現させたのは今回の研究が初めてです。 この成果は、超伝導理論や技術に関する科学雑誌『Superconductor Science and Technology』に2021年9月17日付で掲載されています。

                                                            電気抵抗のない超伝導技術で「2年間永久電流を流すこと」に日本が初成功 - ナゾロジー
                                                          • asahi.com(朝日新聞社):絶縁体+プラスチック=超伝導現象 東北大が新手法 - サイエンス

                                                            絶縁体+プラスチック=超伝導現象 東北大が新手法2008年10月14日7時0分印刷ソーシャルブックマーク 電子材料としてありふれた絶縁体にプラスチックを張りつけると、超伝導現象が起きた――。川崎雅司東北大教授(薄膜電子材料)のグループが、こんな手法を開発した。超伝導材料探しはやや行き詰まり感があるが、今回の研究が新しい潮流になる可能性がでてきた。英科学誌ネイチャー・マテリアルズ(電子版)で13日発表した。 川崎さんらは、パソコンや携帯電話の回路で使われる絶縁体の「チタン酸ストロンチウム」に注目。高純度にした材料に電極をつけてトランジスタに似た構造をつくり、プラスチックの層をつけた。このプラスチックはハイブリッド車などの電源で使われ、電気を蓄える性質をもつ。 こうした構造に高い電圧をかけながら温度を下げた。すると、電気をまったく通さない絶縁体なのに電気が流れ始め、絶対零度に近い零下272.8

                                                            • 常温常圧超伝導体と主張された「LK-99」結局どうなった? - Lab BRAINS

                                                              みなさんこんにちは! サイエンスライターな妖精の彩恵りりだよ! 今回の解説は、2023年7月22日にプレプリントが投稿されて世間を騒がせた、世界初の常温常圧超伝導かもと言われていた物質「LK-99」の解説だよ! もし常温常圧で超伝導を示す物質が実在した場合、それは物理学上の大発見であるために、科学界のみならず株式市場やSNSにいたるまで、様々な反応が出たよね。 でも、ではその後どうなったのか?というのは、追っている人もいればそうでもない人もいるんじゃないかな?ということで、この記事を書いた時点でのLK-99の状況をまとめてみたよ! ただしその前に、まずは基本である超伝導が何かについて振り返りながら解説をしてみるね。 電気抵抗ゼロの「超伝導」という現象 物質には電気を通しやすいもの (導体) と通しにくいもの (不導体・絶縁体) があるというのは義務教育で習うものだけど、この性質は「電気抵抗

                                                                常温常圧超伝導体と主張された「LK-99」結局どうなった? - Lab BRAINS
                                                              • 二次元空間に「最強電子ペア」をもつ超伝導を実現

                                                                水上雄太 理学研究科物理学・宇宙物理学専攻大学院生、松田祐司 同教授、芝内孝禎 同准教授、寺嶋孝仁 低温物質科学研究センター教授らの研究グループは、通常の電子の1000倍にも達する大きな有効質量を持つ「重い電子」を、人工的に2次元空間に閉じ込め超伝導にすることに世界ではじめて成功しました。超伝導は二つの電子がペアを組むことによって生じますが、本研究では、これまでの超伝導体では実現できなかった極めて強く結合した電子ペアをもつ特異な超伝導状態が生じていることを明らかにしました。本研究成果は、英国科学雑誌「Nature Physics」誌に平成23年10月9日(英国時間)にオンライン公開されました。 本研究成果は独自の技術を用いてレアアース(希土類)元素の化合物を交互に積み重ねた「人工超格子」を作製することにより、電子を狭い空間に閉じこめ、自然界には存在しない電子状態を実現することにより得られた

                                                                  二次元空間に「最強電子ペア」をもつ超伝導を実現
                                                                • 一方向にのみ電気抵抗がゼロとなる超伝導ダイオード効果を発見 -エネルギー非散逸な電子回路の実現に向け期待-

                                                                  小野輝男 化学研究所教授、安藤冬希 同博士課程学生(研究当時)らの研究グループは、柳瀬陽一 理学研究科教授、荒川智紀 大阪大学助教らと共同で、非対称構造を有する超伝導人工格子において、一方向にのみ電気抵抗がゼロとなる超伝導ダイオード効果を初めて観測しました。 ダイオードとは、順方向に電流をよく流す一方で逆方向にはほとんど流さない特性を持つ素子であり、整流器・混合器・光検出器など数多くの電子部品に半導体ダイオードが利用されています。しかし、半導体の電気抵抗はゼロでない有限の値を持つため、各部品におけるエネルギー損失の問題が避けられません。そこで、半導体ではなく電気抵抗ゼロの超伝導体にダイオードの特性を付与すること、即ち超伝導ダイオードの実現が望まれていました。 本研究では、ニオブ(Nb)層、バナジウム(V)層、タンタル(Ta)層から構成される非対称構造を有した超伝導人工格子において、臨界電流

                                                                    一方向にのみ電気抵抗がゼロとなる超伝導ダイオード効果を発見 -エネルギー非散逸な電子回路の実現に向け期待-
                                                                  • 超伝導が終わるときのムービー

                                                                    極めて低い温度に冷却した超伝導体の上で磁石が空中制止している映像を見たことがあると思います。 で、かねてからの疑問だったのですが、低温が失われるとポトリと突然、下に落ちてしまうのでしょうか?あるいは温度の上昇とともにゆっくりと下がっていくだけなのでしょうか? その答えは下記ムービーの中で明らかに。 YouTube - Physic Magic Trick http://youtube.com/watch?v=xbcmgcLOU1c なお、この空中でピタリと止まる性質は「ピン止め効果」と呼ばれるもの。上記ムービーではそのピン止め効果の強力さを確かめることもできます。 ピン止め効果がなぜ起きるのかや、超伝導自体については以下のサイトが詳しい。 超伝導 - Wikipedia あと、「超伝導」と「超電導」、どちらの表記が正しいのかについてですが、学術用語では「超伝導」と表記し、実用的なジャンルに

                                                                      超伝導が終わるときのムービー
                                                                    • ハーバード大、世界で初めて「金属水素」の生成に成功…実用化すれば常温超伝導の実現も : 人生逆上がり

                                                                      水素に極めて高い圧力をかけることで、地球上で初めて金属状の水素「金属水素」の生成に成功したとハーバード大学の研究者が発表しました。 金属水素が実用化すれば、常温の超伝導の実現や高エネルギーのロケット燃料、超高速コンピューターの開発など、さまざまな分野での応用が期待されています。 Observation of the Wigner-Huntington transition to metallic hydrogen | Science http://science.sciencemag.org/content/early/2017/01/25/science.aal1579 Hydrogen turned into metal in stunning act of alchemy that could revolutionise technology and spaceflight | Th

                                                                        ハーバード大、世界で初めて「金属水素」の生成に成功…実用化すれば常温超伝導の実現も : 人生逆上がり
                                                                      • なぜ「電気抵抗ゼロ=超伝導物質」というわけではないのかという理由を超伝導物質を研究している専門家が解説

                                                                        韓国・高麗大学量子エネルギー研究センターの研究チームが「常温常圧超伝導を実現した」という論文を発表しました。論文が掲載されたのは査読前論文を掲載するarXivだったため、その真偽はまだはっきりとしていない状態ですが、多くの人が常温常圧超伝導に興味を持ったということで、オーストラリア・モナシュ大学のマイケル・S・フューラー教授が「電気抵抗がゼロだからといって超伝導物質だとはいえない」ことについて、Xに情報をまとめてくれています。 I am seeing a lot of newcomers lately to the room-temperature superconductor rodeo. They might not be aware of the long history of these events, and I think there’s some cross-cultural

                                                                          なぜ「電気抵抗ゼロ=超伝導物質」というわけではないのかという理由を超伝導物質を研究している専門家が解説
                                                                        • 超伝導 - Wikipedia

                                                                          マイスナー効果・ピン止め効果によリ、超伝導体の上に浮かぶ磁石 超伝導(ちょうでんどう、英: superconductivity)とは、電気伝導性物質(金属や化合物など)が、低温度下で、電気抵抗が0へ転移する現象・状態を指す(この転移温度を超伝導転移温度と呼ぶ)。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスが実験で発見した。 超伝導状態下では、マイスナー効果(完全反磁性)により外部からの磁力線が遮断され(磁石と超伝導体との間には反発力が生ずる)、電気抵抗の測定によらなくとも、超伝導状態であることが判別できる。 その微視的発現機構は、電気伝導性物質内では自由電子間の引力が低エネルギーでは働き、その対が凝縮状態となることによると説明される(BCS理論)。したがって、低温度下では普遍的現象ともいえる。 この温度が室温程度の物質を得ること(室温超伝導)は、材料科学の重要な研究目標の一

                                                                            超伝導 - Wikipedia
                                                                          • ハーバード大、「金属水素」の生成に成功 - 室温超伝導への応用に期待

                                                                            ハーバード大学の研究チームは、水素に超高圧をかけることによって「金属水素」と呼ばれる状態を作り出すことに成功したと発表した。金属水素は、超高圧をかけられた水素が、金属光沢や導電性といった金属特有の性質を示すようになるもの。金属水素は、常温で超伝導体として振舞うと理論的に予想されていることもあり、高圧物理の分野では長年にわたり金属水素を作る実験が続けられている。研究論文は、科学誌「Science」に掲載された。 超高圧実験中の水素分子。圧力200GPa付近では透明だった水素分子(左)が、335GPaを超えたところから黒色に変化し(中央)、495GPaで金属特有の光沢を示すようになる(出所:ハーバード大学) 水素は通常、水素原子2個がそれぞれの軌道上にある電子を共有し合って結びつく共有結合によって、水素分子H2を構成している。この状態の水素は、分子間での電子の受け渡しができないため電気を通さな

                                                                              ハーバード大、「金属水素」の生成に成功 - 室温超伝導への応用に期待
                                                                            • ほぼ室温超伝導を示す高圧下ランタン水素は量子固体だった | NIMS

                                                                              ほぼ室温超伝導を示す高圧下ランタン水素は量子固体だった ~予測より低い圧力で超伝導になる理由を理論的に説明 低圧での室温超伝導実現へ道筋~ 国立研究開発法人 物質・材料研究機構 (NIMS) 国立大学法人 東北大学 国立大学法人 東京大学 国立研究開発法人 理化学研究所 NIMSと東北大学、東京大学、理研などで構成される国際研究チームは、温度-23℃というほぼ室温で超伝導になる高圧下ランタン水素が、原子核の量子ゆらぎのおかげで広い圧力域で安定に存在する「量子固体」であることをコンピュータシミュレーションにより発見しました。この発見は、水素を多く含んだ水素リッチ化合物による高温超伝導やさらには室温超伝導がこれまで考えられていたよりも遙かに低い圧力で実現できる可能性を示しています。 NIMSと東北大学、東京大学、理研などで構成される国際研究チームは、温度-23℃というほぼ室温で超伝導になる高圧

                                                                                ほぼ室温超伝導を示す高圧下ランタン水素は量子固体だった | NIMS
                                                                              • Copyright© 2010-2011 大学研究室運営ワーキンググループ(いきいき研究室増産プロジェクト)All Rights Reserved 1 【No.2】うまくいかないのは誰のせい? 本文: 広尾研究室は、超伝導の分野で有名

                                                                                Copyright© 2010-2011 大学研究室運営ワーキンググループ(いきいき研究室増産プロジェクト)All Rights Reserved 1 【No.2】うまくいかないのは誰のせい? 本文: 広尾研究室は、超伝導の分野で有名な研究室のひと つである。広尾研究室は学部生を 9 名、修士 1 年・2 年を各 6 名、博士 1 年を 2 名、博士 2 年を 1 名、博士 3 年を 2 名、そして合計 5 名の研究員、2 名の助教を抱える、比較的大きな研究室である。 広尾研究室の指導方針はグループ制であり、研究室は 3~5 名のグループに分かれている。 各グループは、「応用」「基礎」「評価」という 3 つの方向性のいずれかに沿って研究を進め る。 各グループのリーダーは助教または研究員であり、学部生~博士は 5 つのグループのい ずれかに所属して研究している。グループでは少なくとも週に

                                                                                • ノーベル物理学賞に米の研究者3人 超伝導など原理解明:朝日新聞デジタル

                                                                                  スウェーデン王立科学アカデミーは4日、今年のノーベル物理学賞を米国の大学の研究者3人に贈ると発表した。3人は、米ワシントン大学のデビッド・サウレス氏(82)、米プリンストン大学のダンカン・ホールデン氏(65)、米ブラウン大学のマイケル・コステリッツ氏(73)。 1970年代から80年代にかけ、低温状態で電気抵抗がゼロになる超伝導など、物質の特異な性質のしくみを、トポロジー(位相幾何学)という概念を使ってときあかした。次世代の電子工学や超伝導物質、量子コンピューターなどへの活用が期待されている。 物質は、厚さが原子数個や数十個分といった非常に薄い膜にすると、極微の世界を支配する「量子力学」の法則に従って特異な性質が現れる。 3人はトポロジーの考え方を量子力学の理論に応用。サウレス氏は、膜状の物質に磁場をかけると電気の通りやすさが2倍、3倍と段階的に上がる「量子ホール効果」を解明した。量子ホー

                                                                                    ノーベル物理学賞に米の研究者3人 超伝導など原理解明:朝日新聞デジタル